Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of 2-[4-(2-hydroxy-ethyl)piperazin-1-ium-1-yl]ethanesulfonate at 100 K

Pawel Sledz, Thomas Minor and Maksymilian Chruszcz*

University of Virginia, Department of Molecular Physiology \& Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
Correspondence e-mail: maks@iwonka.med.virginia.edu
Received 15 September 2009; accepted 15 October 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.0004 \AA$; R factor $=0.031 ; w R$ factor $=0.099$; data-to-parameter ratio $=85.1$.

The crystal structure of the title compound (common name HEPES), $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, has been redetermined at 100 K in order to properly elucidate the protonation state of the HEPES molecule. The piperazine ring has a chair conformation and one of the N atoms in the ring is protonated, which was not previously reported [Gao, Yin, Yang, \& Xue (2004). Acta Cryst. E60, o1328-o1329]. The change of protonation state of the nitrogen atom significantly affects the intermolecular interactions in the HEPES crystal. The structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and ionic interactions, as the title compound in solid state is a zwitterion. HEPES molecules pack in layers that are held together by ionic and weak interactions, while a hydrogenbonded network connects the layers.

Related literature

For background to HEPES and analogous compounds, see: Ferguson et al. (1980); Good \& Izawa (1972); Good et al. (1966). For the crystal structure of HEPES crystallized from methanol, see: Wouters et al. (1996) and from water, see: Gao et al. (2004). For related structures, see: Kubicki et al. (2007); Chruszcz et al. (2005); Zhao et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$V=2159.8(4) \AA^{3}$
$M_{r}=238.31$
Orthorhombic, Pbca
$Z=8$
Mo $K \alpha$ radiation
$a=8.341$ (1) A
$\mu=0.30 \mathrm{~mm}^{-1}$
$b=9.567$ (1) \AA
$T=100 \mathrm{~K}$
$c=27.066$ (1) A
$0.50 \times 0.50 \times 0.23 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (Otwinowski et al., 2003)
$T_{\text {min }}=0.86, T_{\text {max }}=0.93$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.099$
208 parameters
$S=1.04$
17694 reflections

613697 measured reflections 17694 independent reflections 14854 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H1O4 $\cdots \mathrm{N}^{2}{ }^{\mathrm{i}}$	$0.85(1)$	$1.99(1)$	$2.8368(4)$	$173(1)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2^{\text {i }}$	$0.83(1)$	$1.92(1)$	$2.7414(4)$	$169(1)$

Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$.

Data collection: HKL-2000 (Otwinowski \& Minor, 1997); cell refinement: HKL-2000; data reduction: $H K L-2000$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM; molecular graphics: HKL3000SM, ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004); software used to prepare material for publication: $H K L$ 3000SM.

The authors thank Zbigniew Dauter for helpful discussions. This work was supported by contract GI11496 from HKL Research, Inc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2269).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chruszcz, M., Zheng, H., Cymborowski, M., Gawlicka-Chruszcz, A. \& Minor, W. (2005). Acta Cryst. E61, o3190-o3191.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ferguson, W. J., Braunschweiger, K. I., Braunschweiger, W. R., Smith, J. R., McCormick, J. J., Wasmann, C. C., Jarvis, N. P., Bell, D. H. \& Good, N. E. (1980). Anal. Biochem. 104, 300-310.

Gao, F., Yin, C., Yang, P. \& Xue, G. (2004). Acta Cryst. E60, o1328-o1329.
Good, N. E. \& Izawa, S. (1972). Methods in Enzymology, Vol. 24, pp. 53-68. New York: Academic Press.
Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. \& Singh, R. M. (1966). Biochemistry, 5, 467-477.

Kubicki, M., Adamiak, D. A., Rypniewski, W. R. \& Olejniczak, A. (2007). Acta Cryst. E63, o2604-o2606.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Minor, W., Cymborowski, M., Otwinowski, Z. \& Chruszcz, M. (2006). Acta Cryst. D62, 859-866.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.

organic compounds

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
The POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/.
Wouters, J., Häming, L. \& Sheldrick, G. (1996). Acta Cryst. C52, 1687-1688
Zhao, J., Zhang, H. \& Ng, S. W. (2006). Acta Cryst. E62, o3424-o3425.

supplementary materials

Acta Cryst. (2009). E65, o3027-03028 [doi:10.1107/S1600536809042512]

Redetermination of 2-[4-(2-hydroxyethyl)piperazin-1-ium-1-yl]ethanesulfonate at 100 K

P. Sledz, T. Minor and M. Chruszcz

Comment

The title compound, (I), known commonly as HEPES, is a sulfonic compound used as a zwitterionic buffer. HEPES and analogous compounds (known as the Good buffers) are used during the study of biological processes (Good et al., 1966; Good \& Izawa, 1972; Ferguson et al., 1980), and very often during crystallization of macromolecules.

The crystal structures of HEPES crystallized from methanol (determined at 293 K - Wouters et al., 1996) and from water (298 K - Gao et al., 2004) have been already reported. Both previously reported structures crystallized in the Pbca space group, but with different unit-cell parameters. Not only the unit-cell parameters, but also the conformations of the HEPES molecules were different. However, our attention was turned to differences in the reported protonation states of the HEPES molecules. In the structure reported by Wouters et al., the HEPES molecule was presented as zwitterionic (II), while in structure reported by Gao et al. HEPES had both piperazine nitrogen atoms non-protonated and a protonated sulfonic group (III). The non-zwitterionic form of HEPES is quite unusual, as all previously determined structures of compounds from this group, e.g. MES [2-(N-morpholino)ethanesulfonic acid] (Kubicki et al., 2007), MOPS [3-(N-morpholino)propanesulfonic acid] (Chruszcz et al., 2005), PBHPS [piperazine-1,4-diylbis(2-hydroxypropanesulfonic acid)] (Zhao et al., 2006), consistently report zwitterionic forms as being observed in the solid state.

In order to localize all hydrogen atoms, the structure determination was performed at 100 K . The crystal structure of the title compound reported here is isomorphous to the structure reported by Gao et al., but a more detailed analysis revealed that the HEPES molecules are zwitterionic and the nitrogen atom (N1) is protonated (Fig. 1). Change of the localization of the hydrogen atom in comparison with the previously reported structure (Gao et al., 2004) significantly affects the hydrogen bond network (Fig. 2, Table 1), which we believed was previously incorrectly determined. To confirm our finding, we also performed a structural analysis of HEPES crystals (crystallized from water or taken directly from the bottle provided by SIGMA) at 293 K . In both cases (100 K and 293 K) the structures had the same protonation state, which excluded the possibility of temperature dependent changes of protonation.

The differing protonation states reported here and in the structure determined by Wouters et al. suggest that the change in protonation state of the HEPES molecule (and/or the change of the conformations of 2-hydroxyethyl and enthanesulfonic moieties) results in generation of polymorphic forms.

The crystal structure of HEPES is stabilized mainly by hydrogen bonds and ionic interactions. Both nitrogen atoms from the piperazine ring, oxygen atom $(\mathrm{O} 4)$ from the hydroxyl group and one of the oxygen atom $(\mathrm{O} 2)$ from the sulfonic group are involved in formation of the hydrogen bond network. Hydrogen bonds extend along the [100] direction and details of their geometric parameters are summarized in Table 1.The HEPES molecules pack in layers that are held together by ionic and weak interactions.

supplementary materials

Experimental

HEPES was purchased from SIGMA (99.5\% purity, lot 036 K5461). The crystal of (I), used for X-ray diffraction study, was obtained by slow evaporation of HEPES solution in water.

Refinement

All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Figures

Fig. 1. The molecular structures of the title compound. Displacement ellipsoids are drawn at the 75% probability level and hydrogen atoms are drawn as spheres of an arbitrary radius.

Fig. 2. The molecular packing of compound (I) shown along the [010] axis. Hydrogen atoms are bonds are marked in green, and H -bonds are shown as blue, dashed lines.

Fig. 3. The structures of (I), (II) and (III).

2-[4-(2-Hydroxyethyl)piperazin-1-ium-1-yl]ethanesulfonate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{1}$
$M_{r}=238.31$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=8.341$ (1) \AA
$b=9.567(1) \AA$
$c=27.066(1) \AA$
$V=2159.8(4) \AA^{3}$
$Z=8$
$F_{000}=1024.0$
$D_{\mathrm{x}}=1.466 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 613697 reflections
$\theta=2.9-62.9^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.50 \times 0.50 \times 0.23 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10 pixels mm^{-1}
$T=100 \mathrm{~K}$
ω scan with χ offset
Absorption correction: multi-scan
(Otwinowski et al., 2003)
$T_{\text {min }}=0.86, T_{\text {max }}=0.93$
613697 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
17694 reflections
208 parameters
Primary atom site location: structure-invariant direct methods

17694 independent reflections
14854 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=62.9^{\circ}$
$\theta_{\text {min }}=2.9^{\circ}$
$h=-20 \rightarrow 20$
$k=-23 \rightarrow 23$
$l=-67 \rightarrow 67$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.060 P)^{2}+0.0821 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.013$
$\Delta \rho_{\max }=0.83$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.80$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.449764(8)$	$0.776637(6)$	$0.555875(2)$	$0.01145(1)$
N2	$0.52317(2)$	$0.69925(2)$	$0.302785(7)$	$0.01111(2)$
O2	$0.30713(2)$	$0.86815(2)$	$0.555768(7)$	$0.01413(3)$
N1	$0.53191(2)$	$0.75196(2)$	$0.408697(7)$	$0.01121(2)$
O4	$0.72742(3)$	$0.83527(2)$	$0.216353(8)$	$0.01514(3)$

C1	$0.45506(3)$	$0.69919(3)$	$0.495798(9)$	$0.01321(3)$
C5	$0.49778(3)$	$0.58710(2)$	$0.339211(8)$	$0.01316(3)$
O1	$0.59735(3)$	$0.85596(3)$	$0.560910(9)$	$0.01744(3)$
C3	$0.56026(3)$	$0.86534(2)$	$0.371519(9)$	$0.01330(3)$
C6	$0.42540(3)$	$0.64240(2)$	$0.386736(8)$	$0.01298(3)$
C4	$0.63131(3)$	$0.80396(2)$	$0.324618(8)$	$0.01271(3)$
C2	$0.46765(3)$	$0.81142(3)$	$0.456032(9)$	$0.01364(3)$
C8	$0.59941(3)$	$0.73733(3)$	$0.213505(9)$	$0.01485(3)$
C7	$0.58957(3)$	$0.63743(2)$	$0.257306(8)$	$0.01343(3)$
O3	$0.43278(4)$	$0.66097(3)$	$0.590283(9)$	$0.02055(4)$
H1A	$0.5416(10)$	$0.6363(10)$	$0.4955(4)$	$0.030(2)^{*}$
H7B	$0.5234(9)$	$0.5552(9)$	$0.2488(3)$	$0.0238(17)^{*}$
H2A	$0.5445(9)$	$0.8874(10)$	$0.4673(3)$	$0.0253(19)^{*}$
H4B	$0.6453(10)$	$0.8784(8)$	$0.3001(3)$	$0.0252(16)^{*}$
H7A	$0.7005(8)$	$0.5925(7)$	$0.2643(3)$	$0.0184(14)^{*}$
H3B	$0.4576(9)$	$0.9063(10)$	$0.3665(3)$	$0.0253(19)^{*}$
H6A	$0.4173(11)$	$0.5721(9)$	$0.4086(3)$	$0.030(2)^{*}$
H6B	$0.3201(9)$	$0.6878(8)$	$0.3822(3)$	$0.0199(15)^{*}$
H4A	$0.7367(10)$	$0.7630(8)$	$0.3328(3)$	$0.0193(15)^{*}$
H1O4	$0.8138(12)$	$0.7897(9)$	$0.2127(3)$	$0.038(2)^{*}$
H5A	$0.6006(9)$	$0.5394(8)$	$0.3472(3)$	$0.0175(14)^{*}$
H3A	$0.6309(10)$	$0.9315(7)$	$0.3860(3)$	$0.0217(16)^{*}$
H5B	$0.4242(10)$	$0.5192(9)$	$0.3260(3)$	$0.0249(18)^{*}$
H1B	$0.3616(9)$	$0.6429(8)$	$0.4933(3)$	$0.0220(16)^{*}$
H8B	$0.5045(10)$	$0.7906(9)$	$0.2102(3)$	$0.0225(17)^{*}$
H1N	$0.6197(10)$	$0.7168(7)$	$0.4156(3)$	$0.0209(16)^{*}$
H2B	$0.3673(10)$	$0.8534(8)$	$0.4489(3)$	$0.0235(17)^{*}$
H8A	$0.6076(9)$	$0.6844(8)$	$0.1846(3)$	$0.0193(15)^{*}$
H				

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01147(2)$	$0.01296(2)$	$0.00992(2)$	$0.00039(1)$	$0.00046(1)$	$0.00017(1)$
N 2	$0.01141(5)$	$0.01171(5)$	$0.01023(5)$	$-0.00043(4)$	$0.00008(4)$	$-0.00049(4)$
O2	$0.01144(6)$	$0.01507(5)$	$0.01589(6)$	$0.00088(4)$	$0.00135(4)$	$-0.00176(4)$
N 1	$0.01141(5)$	$0.01222(5)$	$0.01001(5)$	$0.00009(4)$	$0.00001(4)$	$-0.00027(4)$
O4	$0.01385(6)$	$0.01526(6)$	$0.01631(6)$	$0.00036(5)$	$0.00216(5)$	$0.00128(4)$
C1	$0.01505(8)$	$0.01313(6)$	$0.01144(6)$	$-0.00002(5)$	$0.00161(5)$	$-0.00042(5)$
C5	$0.01598(8)$	$0.01164(6)$	$0.01185(6)$	$-0.00126(5)$	$0.00163(5)$	$-0.00039(4)$
O1	$0.01166(6)$	$0.02271(8)$	$0.01794(7)$	$-0.00175(5)$	$-0.00219(5)$	$-0.00297(6)$
C3	$0.01666(8)$	$0.01192(6)$	$0.01131(6)$	$-0.00133(5)$	$0.00028(5)$	$-0.00032(4)$
C6	$0.01328(7)$	$0.01395(6)$	$0.01170(6)$	$-0.00217(5)$	$0.00141(5)$	$-0.00079(5)$
C4	$0.01330(7)$	$0.01364(6)$	$0.01120(6)$	$-0.00253(5)$	$0.00046(5)$	$-0.00035(5)$
C2	$0.01686(8)$	$0.01329(6)$	$0.01078(6)$	$0.00146(6)$	$0.00107(5)$	$-0.00046(5)$
C8	$0.01395(8)$	$0.01909(8)$	$0.01151(6)$	$-0.00078(6)$	$0.00002(5)$	$0.00110(5)$
C7	$0.01524(8)$	$0.01335(6)$	$0.01171(6)$	$-0.00001(5)$	$0.00150(5)$	$-0.00108(5)$
O3	$0.03015(11)$	$0.01750(7)$	$0.01399(6)$	$0.00248(7)$	$0.00373(6)$	$0.00455(5)$

sup-4

Geometric parameters (A, ${ }^{\circ}$)

S1-O1	1.4525 (3)	C5-H5A	0.995 (8)
S1-O3	1.4532 (2)	C5-H5B	0.963 (8)
S1-O2	1.4771 (2)	C3-C4	1.5190 (3)
S1-C1	1.7874 (3)	C3-H3B	0.951 (8)
N2-C4	1.4719 (3)	C3-H3A	0.949 (8)
N2-C5	1.4724 (3)	C6-H6A	0.898 (9)
N2-C7	1.4736 (3)	C6-H6B	0.987 (8)
N1-C6	1.4971 (3)	C4-H4B	0.981 (8)
N1-C3	1.4984 (3)	C4-H4A	0.988 (8)
N1-C2	1.5008 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	1.016 (9)
N1-H1N	0.827 (8)	C2-H2B	0.948 (8)
O4-C8	1.4226 (4)	C8-C7	1.5250 (4)
O4-H1O4	0.848 (10)	C8-H8B	0.946 (9)
C1-C2	1.5239 (4)	C8-H8A	0.935 (8)
C1-H1A	0.939 (9)	C7-H7B	0.988 (8)
C1-H1B	0.950 (8)	C7-H7A	1.037 (7)
C5-C6	1.5162 (3)		
O1-S1-O3	114.856 (17)	C4-C3-H3A	111.1 (5)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	111.907 (17)	H3B-C3-H3A	110.1 (7)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	111.966 (15)	N1-C6-C5	110.17 (2)
O1-S1-C1	106.317 (13)	N1-C6-H6A	107.9 (6)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	105.650 (15)	C5-C6-H6A	109.1 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	105.296 (12)	N1-C6-H6B	105.6 (4)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	108.376 (18)	C5-C6-H6B	113.7 (4)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7$	112.22 (2)	H6A-C6-H6B	110.1 (7)
C5-N2-C7	108.719 (19)	N2-C4-C3	111.07 (2)
C6-N1-C3	109.504 (18)	N2-C4-H4B	107.2 (5)
C6-N1-C2	113.10 (2)	C3-C4-H4B	109.3 (5)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	110.809 (19)	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	111.4 (4)
C6-N1-H1N	109.3 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.3 (4)
C3-N1-H1N	107.8 (5)	H4B-C4-H4A	109.5 (6)
C2-N1-H1N	106.1 (5)	N1-C2-C1	111.129 (19
$\mathrm{C} 8-\mathrm{O} 4-\mathrm{H1O} 4$	107.0 (6)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.6 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	110.620 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.6 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	113.1 (6)	N1-C2-H2B	107.6 (5)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	106.9 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	112.4 (5)
C2-C1-H1B	113.9 (5)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4 (7)
S1-C1-H1B	106.2 (5)	$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7$	114.27 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	105.5 (8)	$\mathrm{O} 4-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	106.2 (5)
N2-C5-C6	111.782 (19)	C7-C8-H8B	111.5 (5)
N2-C5-H5A	110.8 (4)	O4-C8-H8A	110.3 (5)
C6-C5-H5A	108.7 (4)	C7-C8-H8A	108.4 (5)
N2-C5-H5B	109.5 (5)	H8B-C8-H8A	105.8 (7)
C6-C5-H5B	107.3 (5)	N2-C7-C8	114.71 (2)
H5A-C5-H5B	108.7 (7)	N2-C7-H7B	107.7 (5)
N1-C3-C4	110.055 (19)	C8-C7-H7B	110.3 (5)

supplementary materials

$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	$104.6(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	$113.0(5)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$107.7(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-59.26(2)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.27(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$59.63(2)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$59.21(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$-178.55(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-56.75(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$177.80(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$55.97(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.911(19)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-58.33(3)$

$\mathrm{N} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$110.5(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$110.7(4)$
$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$102.1(5)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-59.66(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-179.726(19)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$59.63(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$62.57(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-174.03(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$159.105(18)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-68.69(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$171.44(2)$
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 2$	$76.07(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.85(1)$	$1.99(1)$	$2.8368(4)$	$173(1)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.83(1)$	$1.92(1)$	$2.7414(4)$	$169(1)$

Symmetry codes: (i) $x+1 / 2, y,-z+1 / 2$; (ii) $x+1 / 2,-y+3 / 2,-z+1$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

Fig. 3

(III)

